Stabilisation of nanostructured $Ce_{0.2}Zr_{0.8}O_2$ solid solution by impregnation on **Al2O3: a suitable method for the production of thermally stable oxygen storage/release promoters for three-way catalysts**

R. Di Monte,*a* **P. Fornasiero,***a* **J. Kaspar,*** ˆ *a* **M. Graziani,***a* **J. M. Gatica,***b* **S. Bernal***b* **and A. Gómez-Herrero***c*

a Dipartimento di Scienze Chimiche, Università di Trieste, 34127 Trieste, Italy. E-mail: kaspar@univ.trieste.it b Departamento de Ciencia de los Materials e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz,

Apartado 40, 11510 Puerto Real, Spain

c Centro de Microscopía Electrónica, Universidad Complutense de Madrid, E28040 Madrid, Spain

Received (in Cambridge, UK) 15th August 2000, Accepted 25th September 2000 First published as an Advance Article on the web

By impregnating γ -Al₂O₃ with cerium/zirconium citrate **solutions and subsequent calcination, nanostructured** $Ce_m Zr_{1-m}O_2$ mixed oxides supported on Al_2O_3 are obtained, **which feature remarkably high oxygen storage even after calcination at 1100 °C for 24 h.**

The oxygen storage/release capacity (OSC) of a three-way catalyst (TWC) is a measure of the ability to attenuate the negative effects of rich/lean oscillations of exhaust gas composition through the Ce^{3+}/Ce^{4+} redox process.¹ By maintaining a stoichiometric composition at the catalyst, the highest conversion efficiency of the exhaust is attained. Accordingly, the efficiency of the OSC is monitored by the vehicle emission on-board diagnostics; decline of OSC being an indication of TWC failure, which makes its substitution mandatory by environmental regulations. In modern TWCs, the OSC is achieved by adding a $CeO₂-ZrO₂$ mixed oxide component.^{2,3} Advent of the 'light-off catalyst', *i.e*. a secondary converter close coupled to the engine, exposes the TWCs to very high temperatures, which requires their thermal stability up to 1100 °C.4

 $Ce_m Zr_{1-m}O_2$ (13 wt%)/ γ -Al₂O₃ (*m* = 1, 0.6, 0.2, denoted as $CZXX/Al_2O_3$, $XX = 100, 60, 20$ were prepared by using a modified citrate complexation method;5 by a single-step wet impregnation of the resulting citrate-containing solution on γ - Al_2O_3 (BET surface area 186 m² g⁻¹, pore volume 1.03 ml g⁻¹). Ce(NO₃)₃·6H₂O (99.99%, Aldrich) was dissolved in water and mixed with an aqueous solution of $ZrO(NO₃)₂$ (20%) $ZrO₂$, MEL Chemicals), then a water solution of citric acid (99.7%, Prolabo) was added. The metal cation to ligand ratio was 1 to 2.1. The resulting solution was stirred at 75 °C for 5 h, then at room temperature (r.t.) for 12 h, and finally concentrated to perform the 'incipient wetness' impregnation of the support. The resulting material was dried at $120\degree$ C for 12 h, heated to 500 °C at a rate of 3 °C min⁻¹ and then calcined at this temperature for 5 h to obtain a yellow powder. These samples are indicated as being 'fresh'. Catalysts were aged by calcination in air. Temperature programmed reduction (TPR) was carried out in a conventional instrument.3 Dynamic-OSC was measured by alternately pulsing CO (100 μ l) and O₂ (100 μ l) over the sample (30–100 mg, maintained in a flow of Ar of 25 ml min^{-1).³ Powder XRD spectra were collected on a}

Table 1 Oxygen storage and textural/structural characterisation of the $CeO₂–ZrO₂$ and $CeO₂–ZrO₂/Al₂O₃$ catalysts

Sample				Phase composition (%)							
	Calcination		BET surface	Al_2O_3					$\mathrm{OSC^b\!/\!ml}$ O_2 $\mathrm{g}_{\mathrm{solid\ solution}}{}^{-1}$		
	T/ C	t/h	area/ $m^2 g^{-1}$	γ	θ c	α	CZ^a	CZ Crystallite size/nm	400 °C	500 °C	600 °C
Al_2O_3	700	5	186	100					$\mathbf{0}$	$\overline{0}$	$\mathbf{0}$
	1100	5	58		56	44					
	1100	24	12			100					
$Ce_{0.2}Zr_{0.8}O_2/Al_2O_3$	500	5	180	100					0.2	2.2	5.8
	1000	5	115		100		t(100)	7	0.6	2.5	4.6
	1000	48	104		100		t(100)	9	0.4	1.8	4.9
	1100	5	68		100		t(100)	11	0.1	1.1	3.5
	1100	24	63		98	2	t(100)	11	0.3	1.3	3.6
$Ce0.6Zr0.4O2/Al2O3$	500	5	168	100					1.7	8.6	16.9
	1000	5	105		100		c(90) t(10)	12 (c) $7(t)$	1.4	5.8	9.2
	1000	48	103		100		c(90) t(10)	12 (c) $7(t)$	1.7	5.2	9.1
	1100	5	71		100		c (74) t (26)	14 (c) $7(t)$	0.5	3.1	8.7
	1100	24	55		80	20	c (75) t (25)	18 (c) 10 (t)	0.2	1.6	6.0
$CeO2/Al2O3$	500	5	180	100					3.2	9.3	13.8
	1100	5	60		100		c(100)	20	0.3	0.9	1.6
	1100	24	32		34	66	c(100)	28	0.4	1.0	1.9
$Ce_{0.2}Zr_{0.8}O_2$	500	5	24				t(100)	6	0.3	1.6	3.4
	1100	5				$\overbrace{}$	t(100)	35	Ω	0	0.1
$Ce_{0.6}Zr_{0.4}O_2$	500	5	42				t''(100)	5	0.9	3.1	5.8
	1100	5					$c(85)$ t (15)	20 (c) 15 (t)	$\mathbf{0}$	0.1	0.6

 a t'', t' and t are tetragonal phases (space group $P4_2/mpc$) with pseudo-cubic cell parameter ratio (*c*/*a*), respectively, of 1.000, 1.002–1.010 and 1.02; c phase: cubic fluorite type of lattice (space group *Fm3m*).² When a mixture of phases was detected the approximate composition was evaluated: c phase: Ce_{0.8}Zr_{0.2}O₂; t phase Ce_{0.2}Zr_{0.8}O₂. *b* For consistency OSC (O₂ uptake) is given per g of CZ mixed oxide. Dynamic-OSC measured at the indicated temperatures. Total-OSC was measured as O_2 uptake at 427 °C after a TPR up to 1000 °C and assuming a full re-oxidation.² 5–7, 15–18 and 18–20 ml O₂ g_{solid solution}⁻¹ were obtained, respectively, for CZ20/Al₂O₃, CZ60/Al₂O₃ and CZ100/Al₂O₃. *c* Some δ -Al₂O₃ was also detected in a few samples and the sum of θ - and δ -Al₂O₃ is given.

Siemens Kristalloflex Mod.F Instrument (Ni-filtered Cu-Ka radiation). The profile fitting of the XRD patterns was performed by a Rietveld analysis program (RIETAN94). High resolution electron microscopy (HREM) measurements were performed using a JEOL 4000-EX microscope equipped with a top-entry specimen holder with 0.18 nm point resolution with an accelerating voltage of 400 kV. Digital processing was carried out by using a CCD camera and the SEMPER 6+ software package.

Table 1 reports the effects of calcination of the fresh samples on textural, structural and OSC properties. Calcination at 700–1100 °C progressively transforms γ -Al₂O₃ into θ -Al₂O₃ and α -Al₂O₃, the latter being the only phase detected after 24 h at 1100 °C. Consistent with the literature, these transformations are hindered by the presence of either $CeO₂$ ⁶ or $ZrO₂$.⁷ This effect is noticeable after calcination at 1100 °C for 24 h; the highest surface area $(63 \text{ m}^2 \text{ g}^{-1})$ being observed for CZ20/ $AI₂O₃$. XRD analysis by Rietveld refinement of CZ20/Al₂O₃ calcined at 1100 \degree C for 5 h revealed the presence of a single phase CZ solid solution. Lattice parameters $a = 3.6296(5)$ and $c = 5.2317(5)$ Å were calculated for the tetragonal cell, which compare well with $a = 3.6396(1)$ and $c = 5.2382(1)$ Å obtained for CZ20 after calcination at 1000 °C. This indirectly confirmed that no appreciable phase segregation occurred. Some $CeO₂$ non-incorporated into the mixed oxide was detected for CZ60/ Al_2O_3 , in accord with a previous observation that compositional inhomogeneities are favoured at intermediate compositions.7 There is a synergic stabilisation between the CZ and Al_2O_3 component, since the sintering of CZ is retarded by the presence of $\overline{Al_2O_3}$, particularly at high ZrO_2 content. For CZ20/Al₂O₃ calcined at 1100 °C a crystallite size of 11 nm was evaluated from the XRD analysis. These findings were confirmed by

Fig. 1 (a) HREM image of $Ce_{0.2}Zr_{0.8}O_2/Al_2O_3$ calcined at 1100 °C for 5 h. The digital diffraction pattern of area 'a' was indexed as tetragonal $Ce_{0.2}Zr_{0.8}O₂$ viewed along the [0,1,0] axis. In the zone marked 'b', interplanar distances typical of θ -Al₂O₃ were found; (b) Comparison of TPR profiles of $Ce_{0.2}Zr_{0.8}O_2/Al_2O_3$ (1) fresh, (2) calcined at 1100 °C for 5 h, and CeO_2/Al_2O_3 (3) fresh and (4) calcined at 1100 °C for 5 h.

HREM analysis which revealed the presence of tetragonal Ce_0 ₂ Zr_0 ₈ O_2 ² particles in the range 9–20 nm [Fig. 1(a)]. The nanosized nature of the CZ component seems attributable to the presence of zirconia rather then ceria, since significantly higher particle sizes were detected by XRD for CZ100/Al₂O₃.

Fig. 1(b) compares the TPR profiles of fresh and calcined (1100 °C) samples of CZ20/Al₂O₃ and CZ100/Al₂O₃. High temperature ageing leads to most reduction occurring at high temperatures in $\overline{C}Z100/Al_2O_3$, consistent with the relatively high $CeO₂$ particle size.⁶ In contrast, reduction at relatively low temperature persists in $CZ20/Al₂O₃$ even after high temperature calcination. Either CeAlO₃ or crystalline CeO₂ were detected by XRD after the TPR/oxidation at 427 °C experiment carried out on CZ100/Al₂O₃. Dispersing CeO₂ over Al_2O_3 led to deactivation of OSC in $CeO₂/Al₂O₃$ owing to formation of $CeAlO₃⁸$ Within the sensitivity of the XRD method (estimating an upper limit of *ca*. 5% CeAlO₃ with respect to the CZ phase in the CZ / Al_2O_3 material for non-detection) no formation of CeAlO₃ was detected in any of the $CZ20/Al₂O₃$ samples. This indicates that incorporation of $ZrO₂$ into $CeO₂$ prevents this undesirable deactivation pathway. The more $\overline{\text{ZrO}}_2$ is added to CeO_2 , the more effective stabilisation is achieved, highlighting the crucial role of $ZrO₂$ in improving the stability of these systems. Phase separation into $CeO₂$ -rich and $ZrO₂$ -rich phases was indeed detected at 1100 °C in CZ60/Al₂O₃, leading to partial formation of CeAlO₃ after TPR/oxidation at 427 °C.

The effects of addition of Al_2O_3 to CZ on the dynamic-OSC are remarkable (Table 1): (i) there is a strong improvement of the dynamic-OSC in the fresh CZ/Al_2O_3 samples compared to the unsupported ones; (ii) thermal ageing at $1000-1100$ °C leads to an almost complete deactivation of the dynamic-OSC in unsupported CZ; (iii) such ageing decreases dynamic-OSC of $CZ/\overline{A}I_2O_3$ compared to fresh samples, however, appreciably high OSC persists, which is comparable or higher than that of fresh CZ; (iv) thermally stable dynamic-OSC was detected in $CZ20/Al₂O₃$, which remarkably did not decline by increasing the calcination time at 1100 $^{\circ}$ C up to 24 h. We tentatively attribute these improved properties to an intimate contact between the CZ20 and Al_2O_3 phases generated by the synthesis method, which stabilises high dispersion of the CZ component (by contrast physical mixtures of CZ and Al_2O_3 calcined at 1100 °C for 5 h showed negligible dynamic-OSC). In summary, materials, which are highly suitable for thermally demanding redox reactions, such as those mediated by TWCs, can be obtained by supporting zirconia rich CeO₂-ZrO₂ mixed oxides over $Al₂O₃$.

Helpful discussions with Drs José J. Calvino and José A. Pérez-Omil (University of Cadiz) are gratefully acknowledged. The CNR (Roma) Programmi Finalizzati 'Materiali Speciali per Tecnologie Avanzate II', Contract n. 97.00896.34, Regione Friuli Venezia-Giulia, Fondo regionale per la ricerca L.R. 3/1998, Fondo Trieste – 1999, and Project CiCYT (MAT-99-0570) are gratefully acknowledged for financial support.

Notes and references

- 1 H. C. Yao and Y. F. Yu Yao, *J. Catal.*, 1984, **86**, 254.
- 2 J. Kašpar, P. Fornasiero and M. Graziani, *Catal. Today*, 1999, 50, 285 and references therein.
- 3 N. Hickey, P. Fornasiero, J. Kašpar, M. Graziani, G. Blanco and S. Bernal, *Chem. Commun.*, 2000, 357.
- 4 A. J. Zarur and J. Y. Ying, *Nature*, 2000, **403**, 65.
- 5 C. Marcilly, P. Courty and B. Delmon, *J. Am. Ceram. Soc.*, 1970, **53**, 56.
- 6 A. Trovarelli, *Catal. Rev.-Sci. Eng.*, 1996, **38**, 439.
- 7 M. H. Yao, R. J. Baird, F. W. Kunz and T. E. Hoost, *J. Catal.*, 1997, **166**, 67.
- 8 J. Z. Shyu, W. H. Weber and H. S. Gandhi, *J. Phys. Chem.*, 1988, **92**, 4964.